Clustering of change patterns using Fourier coefficients
نویسندگان
چکیده
MOTIVATION To understand the behavior of genes, it is important to explore how the patterns of gene expression change over a time period because biologically related gene groups can share the same change patterns. Many clustering algorithms have been proposed to group observation data. However, because of the complexity of the underlying functions there have not been many studies on grouping data based on change patterns. In this study, the problem of finding similar change patterns is induced to clustering with the derivative Fourier coefficients. The sample Fourier coefficients not only provide information about the underlying functions, but also reduce the dimension. In addition, as their limiting distribution is a multivariate normal, a model-based clustering method incorporating statistical properties would be appropriate. RESULTS This work is aimed at discovering gene groups with similar change patterns that share similar biological properties. We developed a statistical model using derivative Fourier coefficients to identify similar change patterns of gene expression. We used a model-based method to cluster the Fourier series estimation of derivatives. The model-based method is advantageous over other methods in our proposed model because the sample Fourier coefficients asymptotically follow the multivariate normal distribution. Change patterns are automatically estimated with the Fourier representation in our model. Our model was tested in simulations and on real gene data sets. The simulation results showed that the model-based clustering method with the sample Fourier coefficients has a lower clustering error rate than K-means clustering. Even when the number of repeated time points was small, the same results were obtained. We also applied our model to cluster change patterns of yeast cell cycle microarray expression data with alpha-factor synchronization. It showed that, as the method clusters with the probability-neighboring data, the model-based clustering with our proposed model yielded biologically interpretable results. We expect that our proposed Fourier analysis with suitably chosen smoothing parameters could serve as a useful tool in classifying genes and interpreting possible biological change patterns. AVAILABILITY The R program is available upon the request.
منابع مشابه
Combining pattern recognition and deep-learning-based algorithms to automatically detect commercial quadcopters using audio signals (Research Article)
Commercial quadcopters with many private, commercial, and public sector applications are a rapidly advancing technology. Currently, there is no guarantee to facilitate the safe operation of these devices in the community. Three different automatic commercial quadcopters identification methods are presented in this paper. Among these three techniques, two are based on deep neural networks in whi...
متن کاملSignal processing approaches as novel tools for the clustering of N-acetyl-β-D-glucosaminidases
Nowadays, the clustering of proteins and enzymes in particular, are one of the most popular topics in bioinformatics. Increasing number of chitinase genes from different organisms and their sequences have beenidentified. So far, various mathematical algorithms for the clustering of chitinase genes have been used butmost of them seem to be confusing and sometimes insufficient. In the...
متن کاملSimulation of an Airy Beam with Optical Vortex under Fractional Fourier Transforms
First, this study obtained the fields of an Airy beam (AiB) with optical vortex (OV) for a Fourier transform (FT) system and a fractional Fourier transform (fractional FT) system; thereafter, their intensity and phase patterns were simulated numerically. The splitting on each line of the phase pattern indicates the position of an OV. The results show that the OV position will change when the po...
متن کاملSimulation of Singular Fourth- Order Partial Differential Equations Using the Fourier Transform Combined With Variational Iteration Method
In this paper, we present a comparative study between the modified variational iteration method (MVIM) and a hybrid of Fourier transform and variational iteration method (FTVIM). The study outlines the efficiencyand convergence of the two methods. The analysis is illustrated by investigating four singular partial differential equations with variable coefficients. The solution of singular partia...
متن کاملOn The Simulation of Partial Differential Equations Using the Hybrid of Fourier Transform and Homotopy Perturbation Method
In the present work, a hybrid of Fourier transform and homotopy perturbation method is developed for solving the non-homogeneous partial differential equations with variable coefficients. The Fourier transform is employed with combination of homotopy perturbation method (HPM), the so called Fourier transform homotopy perturbation method (FTHPM) to solve the partial differential equations. The c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinformatics
دوره 24 2 شماره
صفحات -
تاریخ انتشار 2008